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ABSTRACT: Fractals are promising candidates as nonperiodic, nonresonant
structures exhibiting a homogeneous, isotropic, and frequency-independent
effective optical response. We present a comprehensive optical investigation
of a metallic Hilbert curve of fractal order N = 9 in the visible and near-
infrared spectral range. Our experiments show that high-order fractal
nanostructures exhibit a nearly frequency independent reflectance and an in-
plane isotropic optical response. The response can be simulated in the
framework of a simple effective medium approximation model with a limited
number of parameters. It is shown that high-order Hilbert structures can be
considered as a “transparent in-plane metal”, the dielectric function of which
is modified by the filling factor f, hence creating a tunable conductive effective
metal with tailorable plasma frequency and variable reflectance without going
through an insulator-to-metal transition.
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Most concepts for metamaterials start with a basic unit
“photonic atoms”made of a metallic rod-based

nanostructure forming a resonator. These building blocks are
usually arranged in a periodic array, which is assumed to
represent an isotropic effective medium with the desired optical
response.1 Due to the isolated building blocks, these structures
are never metallic on a larger scale; that is, they exhibit no dc
conductivity. At microwave frequencies, standard procedures
were established for the design of bulk artificial media with
negative effective optical parameters.2 The disadvantage of this
design concept is that such resonator structures provide the
desired optical property only over a small frequency range, and
the periodic arrangement leads usually to some anisotropy. In
the visible and near-infrared spectral range, nanostructures
made by state-of-the-art lithographic methods have the
additional problem that they are not small enough compared
to the wavelength. Therefore, spatial dispersion cannot be
neglected, and even simple periodic nanostructures tend to
exhibit a complex anisotropic polarization behavior, which
cannot be described by effective parameters anymore.3 In the
case of two-dimensional periodic and conductive structures
made of metallic lines in squared or crossed patterns, it is
known that their optical properties are in general strongly
affected by plasmonic resonances and by the diffraction modes
due to the periodicity, which makes the reflectance strongly
dependent on the wavelength.4−6 Ultrathin metal films exhibit,
instead, an isotropic nearly frequency-independent optical
behavior, which theoretically can be tuned by their thickness.

In practice, however, below a certain critical thickness, the so-
called percolation threshold, they undergo a metal-to-insulator
transition, where the dielectric properties diverge.7 One way to
overcome this problem is to look for continuous metal
structures with a homogeneous, isotropic, and frequency-
independent behavior. Self-similar structures are in fact
promising candidates to fulfill these conditions and are
known to foster frequency-independent properties.8 Fractal
structures exhibit additionally no long-range spatial correlations
and therefore are expected to show no spatial dispersion. Some
time after the discovery of fractal structures in nature,9 the first
multiband fractal antenna designs for the microwave region
were suggested,10−13 and recently metamaterials based on
fractal geometries have been investigated even at optical
frequencies.14−18

Hilbert fractal curves are self-avoiding, continuous curves,
proposed for the first time by David Hilbert19 in 1891 as a
particular geometry of a family of curves introduced by
Giuseppe Peano20 in 1890, known as “FASS curves” (space-
f illing, self-avoiding, simple and self-similar). The simplest
Hilbert curve, fractal order N = 1, is formed by a “U”-shaped
meander line similar to a split-ring resonator (see Supporting
Information). With a recursive algorithm the area is then
divided into four quadrants, in each of which a smaller version

Received: June 30, 2015
Published: November 23, 2015

Article

pubs.acs.org/journal/apchd5

© 2015 American Chemical Society 1719 DOI: 10.1021/acsphotonics.5b00363
ACS Photonics 2015, 2, 1719−1724

http://pubs.acs.org/doi/suppl/10.1021/acsphotonics.5b00363/suppl_file/ph5b00363_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsphotonics.5b00363/suppl_file/ph5b00363_si_001.pdf
pubs.acs.org/journal/apchd5
http://dx.doi.org/10.1021/acsphotonics.5b00363


of the precedent order is placed. The four new “U”-shaped
structures are connected to form a Hilbert curve with N = 2.
The same iteration is repeated for N = 2 to form a Hilbert curve
with N = 3, shown in Figure 1a. By continuing to increase the
fractal order N, the space-filling characteristic of the Hilbert
curve leads to an increase of the total length of the line,
resulting for large N in the filling up of the entire area. Hence,
for a given total area, the higher the order N of the structure is,
the longer the line is. Since the Hilbert curve is a long self-
avoiding line, its topological dimension is equal to 1
independently of the fractal order N. Nevertheless, the
similarity dimension DS describes how thoroughly a fractal of
order N fills up the space it inhabits.21 For common geometries
such as a line, a square, and a cube the similarity dimension
equals the canonical topological dimensions of 1, 2, and 3,
respectively. Hilbert curves have a similarity dimension defined
by a noninteger number between 1 and 2. DS increases with
fractal order N until it approaches the limit of DS = 2,
corresponding to the Hausdorff dimension of a Hilbert curve22

for N→ ∞, for a completely filled area (i.e., a closed thin film).
(See the Supporting Information.) As the similarity dimension
approaches DS = 2, the Hilbert curve accomplishes a
continuous mapping of the unit area onto a one-dimensional
line, and it behaves as a quasi-closed surface, almost filling the
area completely.23 Although they have been known for a long
time, little has been done so far to investigate the optical
properties of structures based on space-filling curves at optical
frequencies.24 Hilbert structures could provide a new variety of
geometrical shapes that are by definition nonperiodic. They
have the advantage that spatial dispersion should be limited due
to the absence of spatial correlations. Most of the optical
studies up to now were restricted to low fractal orders (N ≤ 5)
and experimentally confined to intensity transmittance or
reflectance measurements at normal incidence,25 disregarding a
potential k-dependence of the optical response typical for
plasmonic structures.

Here, we present a comprehensive optical investigation of a
metallic Hilbert nanostructure of fractal order N = 9 in the
visible and near-infrared spectral range. To the best of our
knowledge, this is the highest fractal order ever experimentally
investigated. It leads to an optical response that is quasi-
independent of the wavelength of the incoming light, is fully
isotropic, and can be simulated by a simple set of effective
optical parameters. Moreover, we show that the quasi-
frequency-independent reflectivity can be modified over a
large range by simply increasing the width of the Hilbert curve
at constant order N while the conductive properties of the
structure stay preserved. The fractal nature of the Hilbert curve
allows us to fabricate a well-defined conductive path that spans
from one side to the other of the sample. At the same time, the
structure reaches flat reflectance, always staying well above the
percolation threshold. In-plane it is metallic and out-of-plane it
exhibits dielectric behavior; that is, the Hilbert structure is
essentially an artificial hyperbolic material when substrate
effects are additionally taken into account.26

It is interesting to look at the evolution of the Hilbert
structure with increasing fractal order N to check from which
order the Hilbert structure can be considered isotropic. Figure
1 shows the evolution of the Hilbert curve with increasing N
compared with a 5.2 nm thick gold film close to the percolation
threshold, Figure 1a−d, together with the corresponding
autocorrelation function images, Figure 1e−h. The autocorre-
lation function of the Hilbert structure of fractal order N = 3
(Figure 1e) exhibits a periodic array of equally spaced single
sharp peaks demonstrating still a quite high spatial correlation.
Quasi-crystalline structures, as alternative self-similar non-
periodic structures, would exhibit a similar autocorrelation
function containing sharp peaks with much weaker intensities
between the peaks. With increasing fractal order N from 3 to 9
these peaks become closer and closer and a much smoother
autocorrelation image appears. The absence of pronounced
single sharp peaks in the autocorrelation function spectra for
the order N = 9 (Figure 1g) reflects the absence of long-range

Figure 1. (a−d) Real-space Hilbert curves of fractal orders N = 3, 6, and 9 and atomic force microscope image of a thin gold film of 5.2 nm thickness
close to the percolation threshold. The white line on the black area is the Hilbert curve. The scale bar on the right is identical for all figures. In part
(c) the Hilbert curve cannot be resolved due to limitations in the pixel resolution; the inset displays a zoomed-in view of a selected area of ∼4 × 4
μm2, as indicated by the red arrow. (e−h) Corresponding autocorrelation function images. The scale bar on the right is identical for all figures.
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correlations for this Hilbert structure. Its autocorrelation
function is as smooth as that of a totally random discontinuous
Au film close to the percolation threshold (Figure 1h). The size
of the atomic force image of Figure 1d is chosen as 1 × 1 μm2

to visualize the cluster sizes of the Au film. These clusters lead
to some short-range correlations, i.e., a high Gaussian peak in
the center of Figure 1h, which demonstrate that even for a
random gold film some spatial correlations due to the average
cluster size can be detected. In the optical properties this short-
range correlation shows up in pronounced particle plasmons in
the visible for Au films close to the percolation threshold.7 In
the high-order Hilbert structure even these short-range
correlations are missing, and therefore the optical response is
nearly flat. The absence of any long-range order is also reflected
by the similarity dimension DS. Whereas for the order N = 3
DS = 1.694, for N = 9 DS = 1.994, very close to the limit DS =
2 for N → ∞, i.e., a closed thin film. Therefore, it is reasonable
to assume that an increase of the fractal order N does not
significantly change the properties of the structure anymore. In
this work, we fabricate a gold Hilbert nanostructure of order N
= 9 by means of electron beam lithography on a silicon
substrate covered with 3 nm of native oxide.27 The Hilbert
nanostructure consists of a gold wire covering an area of 130 ×
130 μm2. The total wire length of 6.5 cm compared to the
width and thickness of 50 nm gives a very large aspect ratio of
the gold wire. The total patterned area is 2.6 mm by 1.3 mm,
obtained by repeating 20 × 10 times the writing field of 130 ×
130 μm2 (see the Supporting Information). In Figure 2 the

structure is sketched next to a scanning electron microscope
picture of an area of 5 × 5 μm2. The geometrical parameters
lead to a gold filling factor f equal to 20% of the total area, and
the shortest segment has a length a equal to 250 nm. In order
to experimentally confirm the isotropic and frequency-
independent response of the Hilbert structure, intensity
reflectance measurements using p-polarized and s-polarized
incident light were carried out with a Woollam variable-angle
spectroscopic ellipsometer (WVASE) between 400 and 2200

nm, varying the angle of incidence from 30° to 75° in steps of
5°. Azimuthal-dependent measurements were also performed in
the same range for p-polarized light, by rotating the sample
from α = 0° to 90° in steps of 5° at an angle of incidence θ =
35°. In Figure 2c the results show a quasi-flat reflectance over
the entire frequency range, independent of the angle of
incidence and polarization. The reflectance is constant within
5% by varying α, as seen in Figure 2d. The quasi-flat reflectance
shown in Figure 2c is similar to the optical response of thin
metallic films, which also exhibit a frequency-independent
reflectivity.7 Additionally, variable-angle spectroscopic ellips-
ometry measurements were performed to determine the
effective optical constants of the Hilbert structure with the
same experimental parameters used for the reflectance. The
ellipsometry data as well as the reflectance data were
subsequently modeled by a uniaxial general oscillator layer
model (model 1) with in-plane isotropy on top of the substrate,
which was measured and modeled separately. (See the
Supporting Information.) After modeling, the real and
imaginary parts of the effective dielectric functions were
extracted. In the first two plots of Figure 3 the comparison

between the measured spectroscopic ellipsometry angles
Ψ(deg) (Figure 3a) and Δ(deg) (Figure 3b) and those
extracted from model 1 is plotted for five different angles of
incidence. In addition, in Figure 3c the comparison between the
measured reflectance and that extracted from model 1 is plotted
for p-polarized light for 10 different angles of incidence: a
nearly perfect fit of the measured spectroscopic ellipsometry
data and reflectance is obtained for all measured curves. The
real and imaginary parts of the effective dielectric constant
extracted from model 1 are shown in Figure 3d. The sample
shows an in-plane metallic behavior for λ ≥ 1050 nm and a
nearly constant and positive out-of-plane dielectric behavior
with ε1(λ) having positive values between 1 and 2.
Metamaterials with in-plane negative components and an out-
of-plane positive component of the dielectric tensor are in

Figure 2. (a) Schematic 3D drawing of a Hilbert nanostructure. (b)
Scanning electron microscope image of part of the Hilbert
nanostructure of fractal order N = 9. (c) Experimental reflectance
measured with p-polarized (solid curve) and s-polarized (dashed
curve) light at an angle of incidence θ = 35° (red), 45° (magenta), 55°
(navy), 65° (purple), and 75° (dark yellow). (d) Dependence of the
reflectance on the azimuthal angle α measured with p-polarization at θ
= 35°.

Figure 3. Experimental (solid curve) and simulated (dashed line) by
model 1 spectroscopic ellipsometry angles (a) Ψ (deg) and (b) Δ
(deg) for five different angles of incidence. (c) Experimental (solid
curve) and simulated by model 1 (dashed curve) reflectance for 10
different angles of incidence and p-polarized light. (d) In-plane (black)
and out-of-plane (red) real (solid line) and imaginary (dashed line)
part of the dielectric function extracted from model 1.
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general identified as type II hyperbolic metamaterials.26,28 This
finding suggests that Hilbert curve based nanostructures may
also be used to create very thin hyperbolic metamaterials for
applications in the optical frequency range. Furthermore, the
effective in-plane ε1(λ) has values between 0 and −4 in the
near-infrared frequency range, which is also an important
property for applications where low values of the negative real
dielectric function are preferred (e.g., hyperlenses).29 The in-
plane imaginary part of the dielectric constant of Figure 3d
increases with increasing wavelength due to the Drude
component at which four distinct absorption peaks at 850,
1150, 1470, and 1870 nm are superimposed. These peaks
already visible in the reflectance curve (Figure 2c) are related to
resonances within the fabricated Hilbert structure due to the
finite width of the gold wire.30 The out-of-plane ε2(λ) of Figure
3d is zero over the whole frequency range except for the
presence of a small peak at 530 nm, where the out-of-plane
plasmonic resonance of the structure is present.
The measured spectroscopic ellipsometry angles Ψ (deg)

and Δ (deg) and the reflectance shown in Figure 3a,b,c
resemble the optical response of ultrathin Au films, except for
the presence of the broad resonances previously discussed. In
the next step, we therefore model the optical properties of our
sample by a simple Bruggeman effective medium approximation
(BEMA);31 that is, we model it as a composite of Au and voids.
In the following we call this BEMA approach, model 2. For the
modeling we always stay in the metallic regime above the
percolation threshold, considering the fact that our Hilbert
structure always stays conductive. In model 2 (BEMA) the
same out-of-plane general oscillator layer model as in model 1
is used, but the in-plane optical properties are described by a
BEMA model in which the Hilbert structure is considered as an
effective medium and simulated using the dielectric optical
constants of a real 50 nm thick closed gold film with a filling
factor f of 20% and 80% voids (see Supporting Information).
The depolarization factor L = 0.18 is chosen as best fit and kept
fixed. The comparison between the measured and simulated
spectroscopic ellipsometry angles Ψ (deg) and Δ (deg) is
shown in Figure 4a and b, respectively. The reflectance
simulated from model 2 is compared with the measured
reflectance in Figure 4c, while the simulated in-plane and out-
of-plane components of the permittivity are plotted in Figure
4d. As we can see from these figures, the much simpler model 2
is in good agreement with the overall behavior of the measured
data of Figure 4a−c, except for the four absorption peaks seen
in Figure 3d coming from local resonances depending on the
specific shape of the Hilbert structure. This agreement is
interesting, because effective medium theories totally neglect
the specific shape and size of the structure. It especially stresses
the fact that even though the Hilbert structure is not in the limit
of period/lambda ≪ 1, it can be treated as an effective medium
exhibiting no k-dependence of the optical response. The good
overall agreement of model 2 with the measured spectroscopic
ellipsometry and reflectance data allows us to simulate the in-
plane optical properties of the complex Hilbert structure by
only two parameters, the depolarization factor L and the gold
filling factor f, instead of the 15 free parameters (amplitude,
broadening, and position for each of the oscillators) used in
model 1. In the following we will use the simple model 2 to
predict the evolution of the optical properties of the Hilbert
structure with increasing gold coverage. We fix the order of the
Hilbert structure to N = 9 and assume a constant depolarization
factor L = 0.18. The only tuning parameter left is then the

width w of the wire. In model 2 increasing the width w is
equivalent to increasing the gold filling factor f. As previously
mentioned, model 2 does not take into account contributions
from the local resonances in the Hilbert curve, which can
influence the optical response of the structure. Especially at
high gold filling factors f, the width w becomes comparable with
the size a of the curve and reduces the gap between the
individual segments of the structure, hence increasing their
optical coupling and modifying the resonances. However, as a
first approximation neglecting the presence of the resonances,
model 2 allows us to simulate the evolution of the reflectance
and of the corresponding plasma frequency with increased
width w of the structure from w = 50 nm ( f = 20%, measured
structure) to w = 250 nm ( f = 100%, closed gold film).
As already stated, a metallic Hilbert structure is by definition

always conducting even for the lowest filling factors f, in
contrast to ultrathin metallic films, which always cross a
percolation threshold at some specific critical thickness. Neither
varying the width w of the structure nor varying the order N of
the Hilbert curve will lead to an insulator-to-metal transition;
hence no limitations in the use of the BEMA model for
different filling factors are present. The results of the simulation
with increased gold filling factor f are shown in Figure 5. The
reflectance and the corresponding plasma frequency increase
gradually with the filling factor f until they reach the values of a
closed pure gold film without going through a percolation
threshold as in the case of a metallic thin film. The simulation
clearly shows that the optical behavior of the high-order Hilbert
structure, even though always metallic, can be tailored over a
wide range: by only varying the width w of the curve, a broad
range of plasma frequencies can be reached from the ultraviolet
up to the near-infrared frequency range. In this sense, our
structure represents an artificially tailored metal.
In summary, we have investigated the optical response of a

metallic Hilbert nanostructure of fractal order N = 9 in the
optical frequency range. We experimentally showed that high-
order fractal structures exhibit a nearly frequency-independent

Figure 4. Experimental (solid curve) and simulated (dashed line) by
model 2 spectroscopic ellipsometry angles (a) Ψ (deg) and (b) Δ
(deg) for five different angles of incidence. (c) Experimental (solid
curve) and simulated by model 2 (dashed curve) reflectance for 10
different angles of incidence and p-polarized light. (d) In-plane (black)
and out-of-plane (red) real (solid line) and imaginary (dashed line)
part of the dielectric function extracted from model 2.
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reflectance and an isotropic in-plane optical response even
though they are not in the limit period/lambda ≪ 1; the
effective response can be simulated in the framework of a
simple effective medium approximation model with a very
limited number of parameters. Our sample shows an in-plane
metallic behavior and an out-of-plane dielectric response and
can be treated therefore as an artificial hyperbolic metamaterial.
From the simulations we can show that high-order Hilbert
structures can be considered as a “transparent in-plane metal”,
and their dielectric functions can be tailored through the filling
factor f, hence creating a tunable conductive and effective metal
with tailorable plasma frequency and variable reflectance
without going through an insulator-to-metal transition.
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